Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36495479

RESUMO

BACKGROUND: Leaf wettability can be a barrier to retention of agrichemical sprays. Adjuvants are used to modify leaf wetting by sprays to enhance retention. A previous study developed a model that accurately predicted nonadjuvant formulation wetting (contact angle) on both synthetic and leaf surfaces. Model inputs were the surface properties, roughness and polarity, as measured by the wetting tension dielectric method, coupled with the formulation properties, surface tension and dielectric constant. Preliminary work has indicated that the wetting ability of adjuvant formulations on different surfaces could be modelled in a similar way if the effect of adjuvants on solution polarity could be accurately quantified. RESULTS: The wetting of nine agrichemical adjuvants, at a range of concentrations, were measured on seven synthetic and 14 leaf surfaces. A novel method was developed to quantify the interfacial dielectric polarity (IDP) of adjuvant formulations. Adjuvant concentration did not change the IDP indicating the surface-active surfactant molecules migrate to the interface, loading until saturation. Formulation properties of surface tension and IDP were found to be strong predictors of wetting in conjunction with surface properties of the substrate. The previously developed unaltered comprehensive wetting model could predict the wetting of adjuvant formulations on synthetic and leaf surfaces (R2  = 0.9) using these inputs. CONCLUSIONS: Wetting of adjuvant formulations can be modelled for a wide range of surfaces and this model is expected to advance the selection, and development, of adjuvants to target specific surfaces generating the desired wetting outcome. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Pest Manag Sci ; 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36441162

RESUMO

BACKGROUND: Leaf wettability is a major hurdle for the retention of agrichemical sprays that is combated, in part, by using adjuvant modified formulations. Scientists must understand the properties of the leaf surface and the formulation that govern wetting to intelligently select or formulate products to target specific pests. RESULTS: A comprehensive database comprising 11 synthetic surfaces and 54 leaf surfaces (species, adaxial and abaxial sides, cultivars, and plant age) using 35 formulations (neat solutions and adjuvants solutions at different concentrations) was compiled. Surface properties of the physical roughness and chemical polarity, as quantified by the wetting tension dielectric method, and formulation properties of surface tension and polarity, as quantified by dielectric constant, were found to govern wetting. A comprehensive wetting model was developed that employed these variables and was capable of accurately predicting the wetting outcome (R2  = 0.86) on all the leaf and synthetic surfaces investigated. This model adequately predicts adjuvant formulation wetting despite exact formulation polarity being unknown. CONCLUSIONS: Wetting can be modelled for a wide range of surfaces and solutions. The comprehensive wetting model developed shows potential to better predict the wetting outcome of adjuvant formulations should a method to quantify the formulation dielectric constant be developed. This research provides a significant advancement in the understanding of the properties governing wetting, which may aid the selection and development of adjuvants to target specific surfaces. © 2022 Society of Chemical Industry.

3.
Pest Manag Sci ; 73(9): 1854-1865, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28195394

RESUMO

BACKGROUND: Leaf surfaces can have similar wettability, while their roughness and polarity may be very different. This may affect agrochemical bioefficacy, hence there is a need to characterise leaf surface polarity and roughness separately. This paper reviews established surface evaluation techniques and then uses a comprehensive dataset of static contact angles (12 chemical solutions on 15 different species) to compare and contrast them for their ability to characterise leaf surface polarity in isolation from roughness. RESULTS: Many techniques were severely limited when applied to leaf surfaces. A failing of the surface free energy (SFE) concept is that both physical and chemical properties affect the SFE. Additionally, whilst the leaf surface chemistry does not change, the SFE values generated are dependent on the chemical properties of the probe solution employed. CONCLUSIONS: The wetting tension-dielectric (WTD) method stands out due to its ability to isolate and quantify leaf surface roughness and polarity. A novel (WTD) roughness correction factor is proposed to improve SFE determination. The strong correlation between leaf polarity and leaf wettability for polar solutions (such as water) makes the WTD method a valuable tool for the evaluation of leaf surface-droplet behaviour and the advancement of agrochemical spray formulation technologies. © 2017 Society of Chemical Industry.


Assuntos
Folhas de Planta/química , Molhabilidade , Impedância Elétrica , Estatística como Assunto , Termodinâmica
4.
Pest Manag Sci ; 72(3): 551-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25864426

RESUMO

BACKGROUND: How much an agrochemical spray droplet spreads on a leaf surface can significantly influence efficacy. This study investigates the effect solution polarity has on droplet spreading on leaf surfaces and whether the relative leaf surface polarity, as quantified using the wetting tension dielectric (WTD) technique, influences the final spread area. Contact angles and spread areas were measured using four probe solutions on 17 species. RESULTS: Probe solution polarity was found to affect the measured spread area and the contact angle of the droplets on non-hairy leaves. Leaf hairs skewed the spread area measurement, preventing investigation of the influence of surface polarity on hairy leaves. WTD-measured leaf surface polarity of non-hairy leaves was found to correlate strongly with the effect of solution polarity on spread area. CONCLUSIONS: For non-polar leaf surfaces the spread area decreases with increasing solution polarity, for neutral surfaces polarity has no effect on spread area and for polar leaf surfaces the spread area increases with increasing solution polarity. These results attest to the use of the WTD technique as a means to quantify leaf surface polarity. © 2015 Society of Chemical Industry.


Assuntos
Agroquímicos/química , Folhas de Planta/anatomia & histologia , Benzenossulfonatos/química , Propriedades de Superfície , Molhabilidade
5.
Pest Manag Sci ; 67(12): 1562-70, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21681916

RESUMO

BACKGROUND: Spray droplet adhesion is dependent not only on formulation and droplet parameters but also on the surface properties (physical and chemical) of the leaf. Quantifying these leaf surface properties would aid understanding and modelling of adhesion, helping to optimise spray formulations. Fractal dimensions (FDs) were used to quantify the relative leaf surface roughness of ten plant species. Static droplet contact angles were measured on each leaf surface, and wetting tension was calculated. Chemical profiles of the leaf surfaces were developed by evaluating contact angle behaviour relative to solution dielectric constants. RESULTS: The FDs of Cryo-SEM micrographs taken at 300× magnification gave the best correlation with adhesion. The wetting tension intercept had a strong relationship with mean adhesion, and successfully accounted for the wettability of the outlier species. CONCLUSIONS: The microroughness of the leaf surface, as revealed by Cryo-SEM, can be quantified by fractal dimension analysis. However, the wetting tension intercept is a more useful universal measure of the surface properties of the leaf (including roughness) as they pertain to adhesion. The slope of the wetting tension versus dielectric constant plot allowed preliminary quantification of the chemical contribution of leaf surface dielectric behaviour to adhesion.


Assuntos
Folhas de Planta/química , Folhas de Planta/fisiologia , Plantas/química , Molhabilidade , Adesividade , Microscopia Crioeletrônica , Formamidas/química , Fractais , Processamento de Imagem Assistida por Computador , Folhas de Planta/ultraestrutura , Fenômenos Fisiológicos Vegetais , Soluções/química
6.
Chem Commun (Camb) ; (30): 3177-9, 2007 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-17653380

RESUMO

Ternary clusters Cu(9)In(10)S(9)(SEt)(21)(PPh(3))(3) and Cu(11)In(6)S(7)(S(t)Bu)(15) were isolated from the UV-photolysis products of precursors (PPh(3))(2)CuIn(SEt)(4) and (PPh(3))(2)CuIn(S(t)Bu)(4), respectively, and structurally characterized.

7.
Chemistry ; 13(21): 6212-22, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17506047

RESUMO

A detailed study of the thermal decomposition of the zwitterionic, ring-borylated ansa-chromocene hydrido carbonyl complex [Cr(CO)H{Me(4)C(2)(C(5)H(4))[C(5)H(3)B(C(6)F(5))(3)]}] (2) is described. This complex is formed in the reaction between [Cr(CO){Me(4)C(2)(C(5)H(4))(2)}] (1) and B(C(6)F(5))(3) in toluene at -78 degrees C. Above -25 degrees C, 2 decomposes to a 50:50 mixture of the low-spin, 17e Cr(III) complexes [Cr(CO){Me(4)C(2)(C(5)H(4))[C(5)H(3)B(C(6)F(5))(3)]}] (3b) and [Cr(CO){Me(4)C(2)(C(5)H(4))(2)}][HB(C(6)F(5))(3)] (4). Carbon monoxide elimination from 3 b generates high-spin, 15 e [Cr{Me(4)C(2)(C(5)H(4))[C(5)H(3)B(C(6)F(5))(3)]}] (3a), which coordinates two other electron-donating ligands, such as xylyl isocyanide, PMe3, and PPh(2)Me to form the low-spin, 17 e electron complexes 3c, 3d, and 3e, respectively. High-spin, 15 e [Cr{Me(4)C(2)(C(5)H(4))(2)}][HB(C(6)F(5))(3)] (5) is generated by heating 3 b in toluene at 100 degrees C and periodically removing the evolved CO. Efforts to isolate more than a few X-ray quality crystals of 5 were thwarted by its tendency to form an insoluble precipitate (6) with the same molecular formula. Heating the solution of 5 at 120 degrees C results in its partial conversion (ca. 28 %) to 3a, thereby allowing the formation of 3a in yields as high as 74 % from the reaction between 1 and B(C(6)F(5))(3). The X-ray crystal structures of 3 b-e and 5 are described. Cyclic voltammetry measurements on 3 a-e reveal a dramatic reduction in the redox potentials of the complexes relative to their non-borylated analogues. DFT calculations show that this is due primarily to electrostatic stabilization of the oxidized species by the negatively charged borylate group. EPR and 19F NMR spectroscopy allow 3a to be distinguished from its Lewis base adducts 3 b-e and reveal the relative affinities of different Lewis bases for the chromium.

8.
Nano Lett ; 6(6): 1218-23, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16771583

RESUMO

The synthesis and characterization of ultrafine CuInS2 nanoparticles are described. Ultraviolet irradiation was used to decompose a molecular single source precursor, yielding organic soluble approximately 2 nm sized nanoparticles with a narrow size distribution. UV-vis absorption, 1H and 31P{1H} NMR, and fluorescence spectroscopies and mass spectrometry were used to characterize decomposition of the precursors and nanoparticle formation. The nanoparticles were characterized by high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy energy dispersive X-ray spectroscopy, powder X-ray diffraction (XRD), electron diffraction, inductively coupled plasma analysis, UV-vis absorption spectroscopy, and fluorescence spectroscopy. They have a wurzite-type crystal structure with a copper-rich composition. The hypsochromic shift in their emission band due to quantum confinement effects is consistent with the size of the nanocrystals indicated in the HRTEM and XRD analyses.


Assuntos
Fracionamento Químico/métodos , Cobre/química , Cobre/isolamento & purificação , Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Fotoquímica/métodos , Cobre/efeitos da radiação , Luz , Teste de Materiais , Conformação Molecular , Nanoestruturas/efeitos da radiação , Nanotecnologia/métodos , Tamanho da Partícula
9.
Chem Commun (Camb) ; (1): 110-1, 2004 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-14737356

RESUMO

The first thermally robust and air stable bent-sandwich chromocene complex with chromium in the +4 oxidation state has been isolated and fully characterized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...